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Abstract. We demonstrate that the invaded cluster algorithm, introduced by Machta et al (1995
Phys. Rev. Lett. 75 2792–5), is a fast and reliable tool for determining the critical temperature
and the magnetic critical exponent of periodic and aperiodic ferromagnetic Ising models in two
dimensions. The algorithm is shown to reproduce the known values of the critical temperature on
various periodic and quasiperiodic graphs with an accuracy of more than three significant digits,
but only modest computational effort. On two quasiperiodic graphs which were not investigated
in this respect before, the 12-fold symmetric square–triangle tiling and the 10-fold symmetric
Tübingen triangle tiling, we determine the critical temperature. Furthermore, a generalization of
the algorithm to non-identical coupling strengths is presented and applied to a class of Ising models
on the Labyrinth tiling. For generic cases in which the heuristic Harris–Luck criterion predicts
deviations from the Onsager universality class, we find a magnetic critical exponent different from
the Onsager value. But notable exceptions to the criterion are found which consist not only of the
exactly solvable cases, in agreement with a recent exact result, but also of the self-dual ones and
maybe more.

1. Introduction

Explicit exact solutions for the thermodynamic behaviour of (ferromagnetic) Ising models are
available, or expected to exist, only in one dimension and for a few models in two dimensions.
For more complex cases, and in higher dimensions, one has to rely on approximate techniques
or simulations. As one is usually interested in the expectation value of certain observables
such as the magnetization and the susceptibility at a given temperature, Monte Carlo algorithms
sampling the canonical ensemble are often the numerical methods of choice.

The limiting factor in investigating the critical behaviour of spin systems with algorithms
of this kind is the critical slowing at the phase transition point. The time needed to sample
statistically independent system configurations diverges with the system size according to
a power law. The algorithms being most efficient in this respect are the so-called cluster
algorithms, the first of which was introduced by Swendsen and Wang in 1987 [34]. A single-
cluster version, which shows less critical slowing in three and more dimensions, was proposed
by Wolff two years later [36]. Series expansions are also suitable for studying the critical
behaviour of periodic models, but they do not lead to satisfactory results for aperiodic ones [30].

Estimating the critical temperature of the infinite system with Monte Carlo algorithms is
usually done using the Binder cumulant method [10]. (For example, this was used in the first
paper on the universality class for quasiperiodic graphs [9] which will also play an important
role in this paper.) For a number of finite system sizes and several temperature values taken from
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some interval containing the critical temperature, the fourth cumulant of the magnetization is
measured. This cumulant is zero for infinite temperature, 2

3 for zero temperature, and depends
on the system size for all other temperature values; only at the critical temperature do the curves
for different system sizes intersect. This admits rather reliable determination of the location
of the critical point. However, because the system has to be simulated at several temperature
values, this procedure is very time-consuming, and a rough knowledge of the location of the
critical temperature is required beforehand. So, independent methods are certainly useful.

In 1995, Machta et al [24] developed a self-organized version of the Swendsen–Wang
algorithm which they dubbed the invaded cluster (IC) algorithm. It is not only able to locate
the critical temperature without prior knowledge and without any temperature sweeps being
necessary, but also seems to show even less critical slowing than the Wolff algorithm [26]. The
algorithm was shown to reproduce three significant digits of the known values of the critical
temperature on the square and simple cubic lattice Ising models with modest computational
effort [24,25]. The ensemble that is sampled, however, is not the canonical one, and not much
is known about it rigorously. In the thermodynamic limit, it is expected to be equivalent to the
latter, but nothing helpful is known about the finite-size scaling. Also, the thermal exponent and
equivalent quantities, such as ν and α, are not easily measured with the IC algorithm [14,26].

This lack of theoretical knowledge is responsible for the fact that, so far, the best accuracy
in measuring the critical temperature is still an order of magnitude lower than with other cluster
algorithms [12]. Nevertheless, at this accuracy, the IC algorithm is substantially faster. This is
mainly due to the fact that the temperature need not be varied. In addition, the autocorrelation
times are, by a factor of four or more, smaller than those of the Wolff algorithm [25]. (If one is
also interested in observables on sub-systems this is not true, but the autocorrelation times are
still comparable with those of the Wolff algorithm, see [26].) As a rule of thumb, one can expect
the IC algorithm to be at least a factor of five faster. Therefore, it is a good choice for obtaining
a good estimate of the critical temperature with modest computational effort. In addition, one
of the two independent critical exponents, the magnetic exponent yh, can be measured easily.

Those quantities are of particular interest for Ising models on quasiperiodic tilings, a class
of graphs being used as models for the structure of quasicrystals; compare [2,15] and references
therein. As these graphs are very homogeneous, the influence of the quasiperiodicity on the
critical temperature is expected to be small and its rough location should be governed by the first
mean coordination number, see [4] and references therein. The critical exponents are expected
to be the same as their periodic counterparts unless the degree of disorder is bigger than a
‘critical’ value. This is the result of the heuristic criterion by Luck [22] who generalized the
well-known Harris criterion for random disorder [16] to aperiodic structures. This criterion,
now called the Harris–Luck criterion, was recently proved for certain kinds of one-dimensional
disorder [17,20] and corroborated by approximate methods for two-dimensional substitution
systems [18, 19]. But in two or more dimensions, the validity has not yet been systematically
confirmed by simulations.

The IC algorithm has so far only been tested on the square and the simple cubic lattice—
both with success [12, 24–26]. Before its results for more complex situations can be trusted,
however, it should be tested on other graphs for which the critical temperature is known.
This will be done in section 2 for a number of periodic and quasiperiodic graphs. Then, as
a first application, the critical temperature of the Ising model on two quasiperiodic tilings,
a 12-fold symmetric square–triangle tiling [5] and the 10-fold symmetric Tübingen triangle
tiling [6], will be determined. In section 3, we will present a generalization of the IC algorithm
to models with arbitrary coupling strengths. Results of simulations on different realizations
of the Labyrinth tiling [32] with this generalized algorithm will be described in section 4.
Section 5 will give a summary and discussion.
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2. The critical temperature of models with identical couplings

We consider the field-free Ising model defined by a spin σi = ±1 on each vertex i of some
graph and a ferromagnetic bond 〈i, j〉 of coupling strength Jij > 0 between each pair of
neighbouring spins. The internal energy is H(σ) = − ∑

〈i,j〉 Jijσiσj where the sum is over all
bonds. In this section, we restrict ourselves to identical couplings Jij ≡ 1.

For the Ising model with this restriction, the critical temperature is known exactly on a
number of periodic graphs, see [35] for a survey. In the case of two quasiperiodic tilings,
the Penrose tiling [28] and the octagonal Ammann–Beenker tiling [1, 8], there exist Monte
Carlo estimates [21, 27, 33] and high-precision numerical values from a recent analysis of
large periodic approximants using Kac–Ward determinants [31]. With those values, the critical
temperature on the corresponding dual tilings is also known, through the exact relationship [35]

sinh(2βc) sinh(2β∗
c ) = 1 (1)

where βc and β∗
c are the inverse critical temperatures on a graph and its dual. All this offers a

number of graphs on which the IC algorithm can be tested thoroughly.
With the IC algorithm, a given configuration of a (finite-sized) system is updated in two

steps. First, bonds between aligned spins (satisfied bonds) are selected in random order until
one connected component (cluster) wraps around the system in at least one dimension (periodic
boundary conditions are assumed) or all satisfied bonds have been selected. Then, each cluster
(including each isolated spin) is flipped with probability 1

2 . The fraction of selected to satisfied
bonds, f , gives an estimate βest of the inverse critical temperature via [24]

f = 1 − e−2βest . (2)

This is reasonable, as the expectation value off in the canonical ensemble is just the probability
p = 1 − e−2β to select a bond in the Swendsen–Wang algorithm.

For each periodic graph depicted in figure 1, we used the IC algorithm to simulate the
Ising model at 13 different linear system sizes L between 16 and 288. For the quasiperiodic
tilings, shown in figure 2, we had to restrict ourselves to the periodic approximants available.
With each size, 10 bunches of 5000 update steps each were taken. This took approximately
2.3 × 10−6 s per bond on a 266 MHz Pentium II processor which amounts to roughly one day
for all sizes of one graph. The first bunch was used for equilibration and then discarded. For
each one of the remaining, the averages of the quantities of interest were computed and those
numbers treated as an independent sample.

In contrast to the previous IC studies [12,24–26], in which the average off was determined
and βest inferred in the end using (2), we computed βest in each step. This leads to the same
results after finite-size scaling, as shown in [29]. Figure 3 shows the results for the estimates
of the inverse critical temperature on the hexagon packing as a typical example. The picture is
qualitatively the same for all graphs considered: details can be found in [29]. Due to certain
bottlenecks occurring in the cluster growth process [25], the mean value ofβest is always greater
than the median. But both are expected to approach the same value βc in the thermodynamic
limit L → ∞. From the data it is obvious that both curves are inclined towards each other.
This gives rise to the following recipe for estimating βc and its error. We compute linear fits to
both the mean and median values independently using the data points corresponding to some
of the largest system sizes. Then we take the mean of both βc-axis intercepts as an estimate
for βc and half their separation as its error.

There is no a priori justification for this recipe besides the numerical evidence that βc lies
in between both points. The results shown in table 1 agree with the known values to within
more than three significant digits. This indicates that the way βc is estimated is reasonable and
that we considerably overestimate the error. For the Penrose and the Ammann–Beenker tiling,
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(a) (b) (c)

(d ) (e)

Figure 1. Parts of the periodic graphs considered here: (a) square lattice, (b) triangular lattice,
(c) hexagon packing, (d) Kagomé graph and (e) diced graph.

Table 1. IC estimates of the inverse critical temperature for various graphs. Note that the
errors given are very conservative upper bounds. Exact and other numerical values are given
for comparison where available. The exact values are taken from [35], the best numerical ones
from [31]. The values for the dual tilings marked with * were inferred using the exact relation (1).

βc (Mean)
coordination

Graph Exact/best IC estimate Other values number

Square lattice 0.440 686 8 . . . 0.440 5(4) 4
Triangular lattice 0.274 653 1 . . . 0.274 7(5) 6
Hexagon packing 0.658 478 9 . . . 0.658 4(11) 3
Kagomé graph 0.466 566 0 . . . 0.466 5(8) 4
Diced graph 0.415 721 5 . . . 0.415 7(7) 4
Penrose tiling 0.417 046(1) 0.417 0(8) 0.418 1(7) [27] 4

0.416 5(9) [33]
Dual Penrose tiling 0.465 145(1)* 0.465 2(8) 4
Ammann–Beenker tiling 0.418 878 00(1) 0.419 1(7) 0.418 6(7) [21] 4
Dual Ammann–Beenker 0.463 189 74(1)* 0.463 4(10) 4
Tübingen triangle tiling 0.256 5(6) 6

Square–triangle tiling 0.336 4(5) 5.072 . . . � 12 − 4
√

3 [11]

the agreement of our data with the high-precision values [31] is even better than that of the
other Monte Carlo values [21, 27, 33]. This is especially remarkable if one takes into account
the small computational effort.

One can conclude from this that the values of the critical temperature for the 12-fold
symmetric square–triangle tiling [5] and the 10-fold symmetric Tübingen triangle tiling [6]
given in table 1 should have a similar accuracy. Also, they are in the correct rough range that
one expects from the comparison of their first mean coordination number with those of the
square and triangular lattice, see table 1.
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(a) (b)

(c) (d )

Figure 2. Parts of the quasiperiodic tilings considered here: (a) Penrose, (b) Ammann–Beenker,
(c) Tübingen triangle and (d) 12-fold square–triangle tiling.

The autocorrelation times found were all compatible with those given in table 2 of [26],
especially in the fact that they were always less than unity. Therefore, it seems safe to conclude
that the IC algorithm is not significantly slower on quasiperiodic graphs than on periodic ones.
In particular, it should still be much faster in finding the critical temperature (to the above-
mentioned accuracy) than other Monte Carlo algorithms.

3. Generalization of the IC algorithm to non-identical coupling strengths

The IC algorithm has so far only been published for identical coupling strengths Jij ≡ J , but
a generalization to arbitrary ones is rather straightforward [23]. To this end, let us review how
the Swendsen–Wang (SW) and IC algorithms are connected. In the SW algorithm, for each
satisfied bond 〈i, j〉, a random number 0 � tij < 1 is drawn from a uniform distribution and
the bond is selected if the condition

tij < pij := 1 − e−2βJij (3)
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Figure 3. Finite-size scaling of the IC estimates of the inverse critical temperature on the hexagon
packing.

is fulfilled. In the IC algorithm, by contrast, bonds are selected in random order until one cluster
wraps around the system (or a different condition is met, see [12,25]). After solving (3) for β,

β < − 1

2Jij
log(1 − tij ) =: βij (4)

we see how the algorithm has to be generalized. We again draw a random number tij for
each bond and calculate the corresponding βij from (4). Then we sort the bonds ascendingly
with regard to βij and select the satisfied ones in this order until one cluster wraps around the
system (or all satisfied bonds have been selected). If bond 〈k, l〉 was selected last, βkl gives an
estimate βest for the inverse critical temperature.

The random numbers tij play a twofold role here. They determine the order in which the
bonds are selected, and the one corresponding to the last bond selected gives the numerical
value of βest. So it is not necessary to use independent distributions for the tij as long as
the marginal distributions are the same for all of them. Instead, one can use a random
permutation of equidistant points ‘approximating’ the interval [0, 1[ for the tij . With such
a choice, the original algorithm is recovered for identical couplings (in which case the sorting
is trivial).

Now, there is a crucial difference between the original and the generalized version with
regard to the computational complexity. In the case of identical couplings, only a permutation
of the N bonds has to be created. This can be done with a computational effort of order O(N).
The sorting of the arbitrary numbers βij , in contrast, requires an effort of O(N logN) which
makes the algorithm considerably slower. If, however, only a small (constant) number k of
different coupling strengths is present, the sorting can be done with effort O(kN) = O(N) by
the following steps. (Let us assume all bonds to be numbered sequentially 1, . . . , N here.)

1. Create an auxiliary permutation π of the numbers {1, . . . , N}.
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2. For each bond, define a value of the inverse temperature,

βπ(i) := − 1

2Jπ(i)
log

(
1 − 2i − 1

2N

)
i = 1, . . . , N.

3. Create the final permutation � of {1, . . . , N} by repeating the following steps for
i = 1, . . . , N after initializing a list (kt )1�t�k with the indices of the first bonds of
type t appearing in π .

(a) Determine the value of t for which βπ(kt ) becomes minimal.
(b) Set �(i) := π(kt ).
(c) Replace kt by the next bond of type t appearing in π .

Steps 1 and 2 are possible with effort O(N). In step 3, each of the k counters kt takes on all
the values {1, . . . , N} in the worst case. This step can therefore also be performed with effort
O(kN) = O(N). Overall, the sorting procedure takes linear computational effort, only with a
higher constant than in the original algorithm.

The generalized IC algorithm will be applied to a class of Ising models with non-identical
coupling strengths in the following section.

4. The Labyrinth tiling as an example to study the relevance of disorder

4.1. The Ising model on the Labyrinth tiling

The Labyrinth tiling [32] is constructed from a substitution ρ on the two-letter alphabet
A = {a, b}. Here we will consider substitutions of the type

ρ :
a → b

b → bakb

with k � 1. The substitution is iterated infinitely, starting from the word b (or any other finite
word), i.e. in each step it is applied to each letter of the word. This yields a (semi-)infinite
limiting word w. For k = 1, we have the silver mean chain treated in [3]. Each letter is
assigned an interval of a specific length. In this representation, the Cartesian product of w
with itself is taken giving one quadrant of a (distorted) square lattice. Of this, one takes every
other vertex, starting from the origin, and connects each one with its nearest neighbours over
the diagonals of the underlying cells. As there are four types of those cells according to the
letters x, y ∈ A on the vertical and horizontal copy of w, and each bond can be either ‘raising’
or ‘lowering’, we can distinguish 8 different types of bonds in the corresponding Ising model.
We will denote the corresponding coupling strengths by Jxy for the raising and J̃xy for the
lowering bonds. Part of the Labyrinth tiling corresponding to k = 1 is shown in figure 4.

On a four-dimensional submanifold of the eight-dimensional coupling space, the Ising
model is exactly solvable and shows critical behaviour of Onsager type regardless of the
underlying word w [3]. To see what the Harris–Luck criterion [16, 22] predicts, we have to
look at the fluctuation exponent ω, which describes how the deviations of the mean coupling
strength in a finite patch, compared with the infinite volume mean, scale with the size of the
patch. If ω is greater than the ‘critical’ value ωc = 1 − 1

dmν
[22], one expects the disorder to be

relevant, i.e. critical exponents deviating from the Onsager values. Here, ν is the correlation
length exponent of the periodic system (ν = 1 in our case) and the disorder affects all dm = 2
dimensions, thus ωc = 1

2 . For ω < ωc, the disorder is expected to be irrelevant. In the case of
marginal disorder, ω = ωc, the criterion does not make any specific predictions.

For substitution systems, the fluctuation exponent ω can be extracted from the bond
substitution, which is in our case induced by the letter substitution ρ. It is given by
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Figure 4. Part of the Labyrinth tiling corresponding to the substitution with k = 1.

ω = log |λ2|/ log λ1, where λ1 > |λ2| are the two largest eigenvalues of the corresponding
substitution matrix whose entries count how many bonds of one type (determined by the row
of the matrix) are in the substitute for another type (the column). This matrix turns out to be

described by the tensor product of the substitution matrix Mρ =
(

0 k

1 2

)
for ρ with itself, its

spectrum being σ(Mρ ⊗ Mρ) = {λµ : λ,µ ∈ σ(Mρ)} with σ(Mρ) = {1 ± √
1 + k}. Thus,

we find the fluctuation exponent

ω = log k

2 log(1 +
√

1 + k)
. (5)

Substitutions with k < 3 correspond to irrelevant disorder, k = 3 is the marginal case, and for
k > 3 the disorder should be relevant. These predictions shall be tested shortly.

As an alternative model, let us also look at a random case. Instead of using a substitution
for creating the word w, one can also use a random word of which each letter is independently
chosen to be a or bwith probabilitypa and (1−pa), respectively. Due to the way the Labyrinth
is constructed, the resulting bond distribution has correlations within each row and column.
Accordingly, this kind of disorder has a higher fluctuation exponent than uncorrelated disorder,
ω = 3

4 compared with ω = 1
2 , and is relevant with respect to the Harris–Luck criterion.

4.2. Results

First, we successfully tested the implementation of the generalized algorithm on graphs with
identical couplings and a few of the exactly solvable cases of the Labyrinth tiling.

Then, we applied the IC algorithm to the Ising model on the Labyrinth corresponding
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Table 2. Choices for the coupling strengths used in the simulations for the Labyrinth tiling. Those
for the raising and lowering bonds are denoted by Jxy and J̃xy , respectively, where x and y are the
corresponding letters in the horizontal and vertical copy of the word w.

Choice Jaa Jab Jba Jbb J̃aa J̃ab J̃ba J̃bb

#1 1.612 68 1 0.636 930 35 0.356 757 43 0.558 767 24 1 1.470 7784 2.108 427 2
#2 1.340 3778 1 0.773 081 47 0.550 515 91 0.719 494 98 1 1.264 4651 1.628 905 5
#3 0.4 0.8 1 2.8 1.980 992 8 1.228 5752 1 0.192 815 31
#4 2.5 1 0.5 0.75 0.251 595 91 1 1.734 3053 1.296 403 5
#5 1.2 1 0.7 2 1.4 0.9 1.1 1.8
#6 2.5 1 0.4 0.8 2.8 0.9 1.3 0.7
#7 0.4 0.8 1 2.8 1.3 2.3 0.9 2.4
#8 2 1.2 1.2 0.5 2 1.2 1.2 0.5

to the substitutions k = 2, 3, 4 and on the random version with pa = 0.4, using the
choices for the coupling strengths given in table 2. The first two choices (#1, #2) are on
the exactly solvable submanifold, i.e. we chose three of the coupling strengths (Jaa , Jab, Jba)
arbitrarily and the inverse critical temperature to be the one of the square lattice Ising model,
βc = arsinh(1)/2 � 0.440 69, and determined the other five couplings by numerically solving
the five equations [3]

sinh(2βcJxy) sinh(2βcJ̃xy) = 1 x, y ∈ A (6)

and(
sinh(2βcJaa) sinh(2βcJbb)

sinh(2βcJab) sinh(2βcJba)

)2 cosh(βc[−J̃aa + Jba + J̃bb + Jab])

cosh(βc[−Jaa + J̃ba + Jbb + J̃ab])

×cosh(βc[Jaa − J̃ba + Jbb + J̃ab]) cosh(βc[J̃aa + Jba − J̃bb + Jab])

cosh(βc[J̃aa − Jba + J̃bb + Jab]) cosh(βc[Jaa + J̃ba − Jbb + J̃ab])

×cosh(βc[Jaa + J̃ba + Jbb − J̃ab])

cosh(βc[J̃aa + Jba + J̃bb − Jab])
= 1. (7)

The first four (6) are just the duality conditions on the lowering and raising bonds of the
same type. The fifth one (7) involves all the remaining four coupling strengths. The next two
choices (#3, #4) are self-dual but not exactly solvable, i.e. they fulfil the duality conditions (6)
with respect to our chosen temperature, but the fifth condition (7) is significantly violated. The
last four choices (#5 to #8) violate all five conditions. Choice #8 is isotropic, i.e. bonds are
only distinguished with regard to their length.

We estimated the magnetic critical exponent yh = 2−β/ν as described in [12] by plotting
the logarithm of the expectation value of the mass M of the cluster that wrapped around the
system against the logarithm of the linear system size L and then taking a linear fit. As the
expectation values of M and the magnetization of the system are the same, the usual scaling
relation for the magnetization becomes M ∝ Lyh . Two examples are shown in figure 5; the
results are summarized in table 3. For the exactly solvable choices (#1, #2), we always found
the exponent to be of Onsager type and the critical temperature to agree with the exact solution,
i.e. with the choice made above. For the self-dual choices (#3, #4), again, the Onsager exponent
was found in all cases. The critical temperature, however, was not the chosen one for even
values of k (2, 4), but agreed with it for odd ones (1, 3, 5) and probably also in the random
version. (For the latter, the fluctuations in βest were too large to state this unambiguously.)
This is not yet understood.



3106 O Redner and M Baake

100

1000

10000

100000

100

M

L

100

1000

10000

100000

100

M

L

(a)

(b)

Figure 5. Determination of the magnetic exponent yh on the Labyrinth tiling. The mass M of
the cluster wrapping around the system is plotted versus the linear system size L. (a) is a typical
example of Onsager behaviour (coupling choice #4 with k = 4) and (b) is typical of non-Onsager
behaviour (choice #7 with k = 4). The solid lines have the Onsager slope yh = 1.875, the dashed
line is a linear fit yielding yh � 1.453. The fluctuations in (b) are due to variations in the bond
frequencies in the approximants used.

For the arbitrary choices (#5 to #8), the critical exponent was of the Onsager class for
k = 2. For k � 3, we still found power-law behaviour for all choices, but a significantly
different exponent for choice #7 with k = 4. For the values in table 3 marked with †, no
unique conclusion could be drawn, although the linear fits indicate deviations. With the clear
deviation for choice #7, k = 4, and the predicition of the Harris–Luck criterion in mind, also
choice #7 with k = 3 might be interpreted as a deviation from the Onsager value. Choice
#5 and choice #8 with k = 2 are definitely compatible with the Onsager exponent, but the
deviations might just be too small to be detected. In the random case, the fluctuations in M

were too large to even confirm a power-law behaviour. This is probably due to the random
fluctuations of the bond frequencies in the approximants used. For choices #1 to #4, however,
the picture was qualitatively the same as in part (a) of figure 5.
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Table 3. IC estimates of the magnetic critical exponent yh on the Labyrinth tiling for three different
substitutions and the random case, each one with the eight choices of the coupling strengths given
in table 2. The value marked with * is significantly different from the Onsager value yh = 1.875.
Due to fluctuations as visible in part (b) of figure 5, the total error for the values marked with * or
† is presumably quite large (≈0.03). In the random case, the flucuations for choices #5 to #8 were
too large to even confirm a power-law behaviour. The fluctuation exponent ω for the substitutions
was computed using (5).

Choice of couplings

k ω #1 #2 #3 #4 #5 #6 #7 #8

2 0.345 . . . 1.872 1.871 1.875 1.876 1.875 1.871 1.859 1.872

3
1

2
1.874 1.875 1.873 1.876 1.871 1.847† 1.732† 1.880

4 0.590 . . . 1.872 1.873 1.877 1.875 1.866 1.839† 1.453* 1.898†

Random
3

4
1.874 1.878 1.877 1.862 fluctuations too large

5. Summary and discussion

We tested the IC algorithm for the Ising model on various periodic and aperiodic planar
graphs. A procedure was described that makes use of special properties of the algorithm in
two dimensions and allows determination of the critical temperature with an accuracy of more
than three significant digits. The computational effort for this is small compared with other
Monte Carlo methods. Then we estimated the critical temperature on the 12-fold symmetric
square–triangle tiling and the 10-fold symmetric Tübingen triangle tiling, two cases for which
no values were known before. The values found are located in the rough range that one expects
from the first mean coordination number of the tilings.

In the second part of the paper, we presented a generalized version of the algorithm
applicable to models with non-identical coupling strengths. We applied it to the Ising model
on the Labyrinth tiling for three different underlying substitutions, corresponding to irrelevant,
marginal, and relevant disorder according to the Harris–Luck criterion, and a random case with
relevant disorder. Each one was simulated for a few typical choices of the coupling strengths
on the exactly solvable submanifold, on the self-dual but not exactly solvable submanifold, and
away from both. The magnetic critical exponent yh = 2 − β/ν was determined in all cases.
The values found were compatible with the Onsager value for all self-dual subcases including
the exactly solvable ones. For the latter this was known to be true exactly [3]. But it seems to
extend to all self-dual cases even when the Harris–Luck criterion predicts deviations. For some
(but not all) other choices of the coupling strengths, when the disorder was marginal or relevant
according to the criterion, power-law behaviour with different exponents was observed in the
substitution systems. The criterion can therefore be expected to be generically correct, but
it does not exclude exceptions on lower-dimensional coupling manifolds. The sharp contrast
seen in the random version between self-dual and not self-dual cases with respect to the absence,
respectively presence, of large fluctuations of the mass of the cluster that wraps around the
system might indicate that exceptions to the criterion are restricted to the self-dual submanifold.
But further investigations are necessary to confirm this observation.

The IC algorithm has proved a good tool for efficiently obtaining quite accurate estimates
of the critical temperature for periodic and aperiodic planar graphs. Although only one of
the two independent critical exponents, the magnetic one, can be measured, this gives at least
the possibility of detecting deviations from the Onsager universality class. Fortunately, it is a
more sensitive quantity for this purpose than the specific heat exponent α, which is expected
to remain zero when the disorder is increased [13].
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